Урок №2. Растровые изображения на экране монитора

<u>Цели:</u> формирование представлений о графических режимах экрана монитора,

Задачи:

- познакомить учащихся с зависимостью качества изображения на экране монитора от пространственного разрешения и глубины цвета; формулой расчета объема видеопамяти;
 - активизировать познавательную активность учащихся;
 - научить выделять главные моменты из общего материала.

Требования к подготовке учащихся:

Знать/понимать: - зависимость качества изображения на экране монитора от пространственного разрешения и глубины цвета;

Уметь: - определять объем видеопамяти по формуле $I_n = I \times X \times Y$ *Использовать:* - полученные знания и умения в дальнейшем.

<u>Тип урока:</u> урок – ознакомление с новым материалом <u>Формы работы</u>: фронтальная, индивидуальная

Ход урока:

1. Организационный момент

2. Изучение нового материала

Графические режимы монитора. Качество изображения на экране монитора зависит от величины **пространственного разрешения** и **глубины ивета.**

Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800*600, 1024*768, 1152*864 и выше).

Глубина цвета измеряется в битах на точку и характеризует количество цветов, в которые могут быть окрашены точки изображения. Количество отображаемых цветов также может изменяться в широком диапазоне, от 256 (глубина цвета 8 битов) до более чем 16 миллионов (глубина цвета 24 бита).

Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения.

В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима.

Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек) и глубиной цвета 8 битов. Двоичный код цвета всех точек хранится в видеопамяти компьютера (рис. 1.3), которая находится на видеокарте (рис. 1.4).

Рис. 1.3. Формирование растрового изображения на экране монитора

Видеопамять	
№ точки	Двоичный код цвета точки
1	01010101
2	10101010
800	11110000
480000	11111111

	1 2 3 4 800
1	
2	
3	
•••	
600	

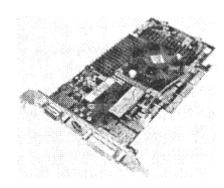


Рис. 1.4. Видеокарта

Видеокарта устанавливается в слот расширения системной платы \underline{PCI} или \underline{AGP} . Монитор подключается к аналоговому выходу \underline{VGA} или цифровому выходу \underline{DVI} видеокарты.

Периодически, с определенной частотой, коды цветов точек вчитываются из видеопамяти точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцания изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.

Объем видеопамяти. Информационный объем требуемой видеопамяти можно рассчитать по формуле:

$$I_n = I \times X \times Y$$
,

где I_n - информационный объем видеопамяти в битах; $X \times Y$ - количество точек изображения (X - количество точек по горизонтали, Y - по вертикали); I - глубина цвета в битах на точку.

Пример: необходимый объем видеопамяти для графического режима с пространственным разрешением 800 х 600 точек и глубиной цвета 24 бита равен:

 I_n = $I \times X \times Y$ = 24 бита \times 800 \times 600 = 11 520 000 бит = 1 440 000 байт = 1 406,25 Кбайт = 1,37 Мбайт.

Качество отображения информации на экране монитора зависит от размера экрана и размера пикселя. Зная размер диагонали экрана в дюймах (15", 17" и т. д.) и размер пикселя экрана (0,28 мм, 0,24 мм или 0,20 мм), можно

оценить максимально возможное пространственное разрешение экрана монитора.

3. Закрепление изученного материала

1.1. Определить максимально возможную разрешающую способность экрана для монитора с диагональю 17" и размером точки экрана 0,28 мм.

4. Подведение итогов.

- 1. С помощью каких параметров задается графический режим экрана монитора?
- 2. Как вы думаете, почему частота обновления изображения на экране монитора должна быть больше, чем частота кадров в кино?